# Repetitive Impact Response of Multiple Beam Structures Through Constraint and Modal Mapping Methods

Dr. Elizabeth K. Ervin, Assistant Professor, Civil Engineering

### The University of Mississippi School of Engineering

**Executive Summary** 

This work analytically investigates the repetitive impact dynamics of two orthogonal pinned-pinned beams subjected to base excitation at specified frequency and acceleration.

## MOTIVATION

11111

## Applications:

Mechanical components in such industries as

- > nuclear (steam generator tubes, reactor rods)
- > petroleum (drillstrings, piping systems)
- biomedical (artificial heart valves)
- automotive (transmission gear sets)

## **Consequences:**

Mechanical, thermal, or chemical damage as noise, wear, damage, fracture, fatigue, collapse through fretting, adhesion, abrasion, spalling, pitting, and plastic flow

## **OBJECTIVES**

- > Examine impact-driven vibration
- Predict beam response
- Determine major response factors through parameter studies

#### METHODOLOGY

- → The vibration is described in a piecewise fashion as switching between the linear in-contact and not-incontact states.
- $\rightarrow$  Compatibility conditions are applied at junctions.
- $\rightarrow$  The model is discretized through the subset of N modes  $\Phi$  in each state such that

$$\chi^{(j)}(x,t) \approx \sum_{m=1}^{N} \eta^{(j)}_{m}(t) \,\underline{\phi}^{(j)}_{m}(x)$$

where

U

$$\ddot{\eta}_m^{(j)} + 2\xi^{(j)}\omega_m\dot{\eta}_m^{(j)} + \omega_m^2\eta_m^{(j)} = \langle \underline{f}, \underline{\phi}_m^{(j)} \rangle$$

#### MODEL

- 2 orthogonal Euler-Bernoulli beams
  - → Parameters b, h, A, E, I, L
  - $\rightarrow$  Deflection, w(x,t)
  - → Contact stiffness. k
- → Deadband clearance, c
- Single point of linear spring contact
- Pinned end conditions
- > Base excitation,  $e(t) = e_0 \sin \omega t$





#### SIMULATION

- > Numerical solution for response is calculated using MATLAB.
- Repetitive Impact Frequency Response Functions are ⊳ generated for the steady-state motion by capturing the contact impulse.
- The minimum numbers of required modes to reach a relative convergence are used.

#### **Sample Results** Contact Stiffness

→ As k increases, the structure of the repetitive impact frequency response functions also increases in sophistication.



## **Relative Beam Stiffness**

 $\rightarrow$  For  $E_1I_1/(E_2I_2) = \frac{1}{2}$ , a minor anti-resonance exists, signifying passive vibration control targeted at specific excitation frequencies.



Normalized Frequency, ω\*

## **RESULTS AND CONCLUSIONS**

- > The responses will include such phenomena as
  - →system resonance
  - →harmonic resonance
  - → bifurcation
  - →grazing impact
  - →aperiodicity
- > The response complexity is strongly affected by →contact stiffness
  - →relative beam stiffness
  - but weakly affected by
  - →damping
  - →clearance
  - →acceleration
- Proper selection of relative beam stiffness creates passive vibration control.

#### FUTURE WORK

- > Experimental studies verifying trend behavior
- > New numerical studies are also required to
- model experiment apparatus
- > Expanded cases will be examined such as
  - →Shock and ballistic loading
  - →Parallel beams
  - →Composite materials

## OUTCOMES

#### Publications

E. K. Ervin, "Repetitive Impact in Continuous Structures." Mid-South Area Engineering & Sciences Conference, May 17-18, 2007, Oxford, MS, MAESC10050, 2007.

E. K. Ervin, "Repetitive Impact Between Two Orthogonal Beams," 18th Engineering Mechanics Division Conference of the American Society of Civil Engineers, June 3-6, 2007, Blacksburg, VA.

E. K. Ervin, "Repetitive Impact Between Orthogonal Beams, Part I: Theory." ASCE Journal of Engineering Mechanics (submitted).

E. K. Ervin, "Repetitive Impact Between Orthogonal Beams, Part II: Simulation." ASCE Journal of Engineering Mechanics (submitted).

E. K. Ervin, planned paper, "Dynamics of Nonlinear Structures with Contact Interfaces," The 8th World Congress on Computational Mechanics, Venice, Italy, June 30 - July 5, 2008.

#### Proposals

1/24/07 National Science Foundation Major Research Instrumentation Program, "MRI: Acquisition of Equipment for the Multi-Function Dynamics Laboratory." \$1,103,110; Status: Declined

2/2/07 Oak Ridge Associated Universities Ralph E. Powe Junior Faculty Enhancement Award, "Repetitive Impact Response of Multiple Beam Structures through Constraint and Modal Mapping Methods." \$10,000; Status: Awarded.

7/18/07 National Science Foundation CAREER Award, "CAREER: Research and Education in Coupled Motion through the Multi-Function Dynamics Laboratory." \$402,147; Status: Pendina



