
METHODOLOGY
→ The vibration is described in a piecewise fashion as 

switching between the linear in-contact and not-in-
contact states.

→ Compatibility conditions are applied at junctions. 
→ The model is discretized through the subset of N 

modes Φ in each state such that 

where

SIMULATION
Numerical solution for response is calculated using 
MATLAB.
Repetitive Impact Frequency Response Functions are 
generated for the steady-state motion by capturing the 
contact impulse.
The minimum numbers of required modes to reach a 
relative convergence are used.

Sample Results
Contact Stiffness
→ As k increases, the structure of the repetitive impact 

frequency response functions also increases in 
sophistication.

Relative Beam Stiffness

→ For                          = ½, a minor anti-resonance exists, 
signifying passive vibration control targeted at specific 
excitation frequencies.c
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Executive Summary
This work analytically investigates the repetitive impact dynamics of two orthogonal pinned-pinned beams subjected to base excitation at specified frequency and acceleration. 

MOTIVATION
Applications:
Mechanical components in such industries as 

nuclear (steam generator tubes, reactor rods)
petroleum (drillstrings, piping systems)
biomedical (artificial heart valves)
automotive (transmission gear sets)

Consequences:
Mechanical, thermal, or chemical damage as 
noise, wear, damage, fracture, fatigue, collapse 
through fretting, adhesion, abrasion, spalling, 
pitting, and plastic flow

OBJECTIVES
Examine impact-driven vibration 
Predict beam response
Determine major response factors through 
parameter studies

MODEL
2 orthogonal Euler-Bernoulli beams
→ Parameters b, h, A, E, I, L 
→ Deflection, w(x,t)
→ Contact stiffness, k
→ Deadband clearance, c
Single point of linear spring contact
Pinned end conditions
Base excitation, e(t) = eo sin ωt

CONJOINED MODE SHAPES
Natural Frequencies and Mode Shapes
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RESULTS AND CONCLUSIONS
The responses will include such phenomena as 
→system resonance
→harmonic resonance
→bifurcation
→grazing impact
→aperiodicity

The response complexity is strongly affected by 
→contact stiffness
→relative beam stiffness

but weakly affected by 
→damping
→clearance
→acceleration

Proper selection of relative beam stiffness creates 
passive vibration control. 

FUTURE WORK
Experimental studies verifying trend behavior
New numerical studies are also required to 
model experiment apparatus
Expanded cases will be examined such as
→Shock and ballistic loading
→Parallel beams
→Composite materials
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