

Vibration Experiments on a Damaged Beam

Ling-Yu Su (M.S. Student), Dr. Elizabeth K. Ervin (PI)

Civil Engineering, University of Mississippi

Motivation

As part of an initial investigation of structural health evaluation, laboratory experiments are used to determine potential parameters for damage detection. A structural change due to damage may be identifiable by examining vibratory characteristics including natural frequency and damping shifts.

Objectives

- Relate motions of undamaged and damaged structures.
- Experimentally obtain time histories and frequency responses for a beam
 - undamaged state
 - two incrementally damaged states
- Examine natural frequencies and damping shifts

Experimental Setup

Support Condition

	Natural Frequencies (Hz)			
Mode	Pinned-free	Experimental	Fixed-free	
1 st	0	3.11	3.89	
2 nd	17.07	20.38	24.39	
3 rd	55.30	58.89	68.29	

Analytical Model Comparison

Tuned torsional stiffness (K_t) for 1st mode.

Damage Description

Implies non-linearity

Damping Effects

	Damping Ratio		
Mode	Undamaged	Damage state 1	Damage state 2
1 st	1.58%	1.54%	2.17%
2 nd	0.85%	0.47%	0.62%
3 rd	0.07%	0.08%	0.18%

Comparison of Undamaged and Cumulatively Damaged Conditions

Preliminary Conclusions

- Change of natural frequency in measured frequency response may be an indicator of cumulative damage.
- Damping might also be an indicator.
- Trend behavior is not yet predictable.

Sources of Error

- Coupled motion
- Hand machining
- Clamped condition disturbance
- Non-linearity

Future Work

this process Extend to the behavior damage of а laboratory-constructed tower.

